NOTE OF FUNCTIONAL ANALYSIS

CHI-WAI LEUNG

Throughout this note, all spaces X, Y .. are normed spaces over the field K =R or C. And By
denotes the closed unit ball of X.

1. HAHN-BANACH THEOREM

Lemma 1.1. Let Y be a subspace of X and v € X \Y. Let Z =Y @ Kv be the linear span of Y
and v in X. If f € Y*, then there is an extension F € Z* of f such that ||F|| = ||f]].

Proof. W.L.O.G. assume that || f|| = 1.

Case K=R:

We first note that since || f|| = 1, we have |f(z) — f(y)| < ||[(x +v) — (y +v)|| for all z,y € Y. This
implies that — f(z) — [z +v| < —f(y) —|ly+ v for all ,y € Y. Now let v = sup{—f(z) — ||z +v| :
x € X }. This implies that 7 exists and

(L.1) —f) = lly+oll <v<=fly) = lly +of

for all y € Y. So if we define F': Z — R by F(y + av) := f(y) + a~. It is clear that F|y = f. For
showing F' € Z* with ||F|| = 1, since F|y = f on Y and | f|| = 1, it needs to show |F(y + av)| <
ly 4+ av|| for all y € Y and a € R.

In fact, for y € Y and « > 0, then by inequality 1.1, we have

(1.2) |F'(y + av)| = f(y) + av] < [ly + av]].

Since y and « are arbitrary in inequality 1.2, we see that |F(y + av)| < ||y + av]| for all y € Y and
a € R. Therefore the result holds when K = R.

Now for the complex case, let h = Ref and ¢ = Imf. Then f = h + ig and f,g both are real
linear with ||h|| < 1. Note that since f(iy) = if(y) for all y € Y. This implies that g(y) = —ih(iy)
for all y € Y. This gives f(-) = h(-) —ih(i-) on Y. Then by the real case above, there is a real
linear extension H on Z :=Y @ Rov @ iRv of h such that |H| = ||h|. Now define F': Z — C by
F(-):=H(-)—iH(i-). Then F € Z* and F|y = f. Thus it remains to show that |[F|| = || f|| = 1. It
needs to show that |F(z)| < ||z|| for all z € Z. Note for z € Z, consider the polar form F(z) = re®.
Then F(e=®2) = r € R and thus F(e %2) = H(e=%*%). This yields that

|F(2)] =r=|F(e"2)| = |H(e 2)| < [|H[[lle™2[| < ||2]I
The proof is finished. l

Theorem 1.2. Hahn-Banach Theorem : Let X be a normed space and let Y be a subspace of
X. If f € Y™, then there exists a linear extension F' € X* of f such that ||F|| = || f]|-

Proof. Let X be the collection of the pairs (Y, f), where Y is a subspace of X and f € Y*. Define
a partial order < on X by (Y1, f1) < (Ya, f2) if Y1 C Y5 and faly, = fi. Then by the Zorn’s lemma,
there is a maximal element (Y, F) in X. Then by the maximality of (Y, F) and Lemma 1.1 will
give Y = X. The proof is finished. O

Proposition 1.3. Let X be a normed space and o € X. Then there is f € X* with || f| = 1 such
that f(xzg) = ||zo||. Consequently, if x,y € X with x # y, then there exists f(x) # f(y).
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Proof. O
Proposition 1.4. With the notation as above, if M is closed subspace and v € X \ M, then there
is f € X* such that f(M) =0 and f(v) # 0.

Proof. O

Proposition 1.5. Retains the notation as above. If X™* is separable, then X is separable.

Proof. Let {f1, fa....} be a dense subset of X*. Then there is a sequence (z,,) in X with ||z,| =1
and |fn(xn)| > 1/2||fn]| for all n. Now let M be the closed linear span of z,’s. Then M is a
separable closed subspace of X. We are going to show that M = X.

Suppose not. Prop 1.4 will imply that there is a non-zero element f € X* such that f(M) = 0.
On the other hand since {fi, f2....} is dense in X*, then there is a subsequence (f,,) such that
| fr, — fIl = 0. This gives

1
because f(M) = 0. So ||fn,|| = 0 and hence f = 0. It leads to a contradiction. O
Proposition 1.6. Let X and Y be normed spaces. If T € L(X,Y), then its adjoint operator
T € L(Y*, X*) and ||T|| = || T*|.
Proof. O
Proposition 1.7. Let Q : X — X™* be the canonical map. Then Q is an isometry.
Proof. Note that for z € X and z* € By, we have |Q(x)(x*)| = |x*(z)| < ||z||. Then ||Q(z)] <
[
It remains to show that ||z|| < ||Q(z)|| for all x € X. In fact, for z € X, there is z* € X* with
||l*|| = 1 such that ||z|| = |z*(z)| = |Q(z)(z*)| by Proposition 1.3. Thus we have ||z|| < ||Q(z)].
The proof is finished. O

Definition 1.8. A normed space X is said to be reflexive if the canonical map Q : X — X** is
surjective.

Example 1.9. (i) : P is reflexive for 1 < p < oo.
(ii) : co is not reflexive.
Proposition 1.10. Every subspace (not necessary to be closed) of a reflexive space is reflexive.

Proof. ]

2. OPEN MAPPING THEOREM

Lemma 2.1. Let T : X — Y be a bounded linear surjection from a Banach space X onto a
Banach space Y. Then 0 is an interior point of T(U(1)), where U(r) := {z € X : ||z|| < r} for
r > 0.

Proof. Claim 1 : 0 is an interior point of T'(U(1)).

Note that since T is surjective, Y = J;2; T(U(n)). Then by the second category theorem, there
exists NV such that int T(U(N)) # (). Let ¢’ be an interior point of T(U(N)). Then there is n > 0
such that B(y',n) C T(U(N)). Since B(y',n) NT(U(N)) # 0, we may assume that ¢y € T(U(N)).
Let 2/ € U(N) such that T'(z') = ¢/. Then we have

0€ B(y,n) —y CTON)) - T(a') € T(U2N)) = 2NT(U(1)).

So we have 0 € 55 (B(y',n) —y') € T(U(1)). Hence 0 is an interior point of T(U(1)). So Claim 1
follows.
Therefore there is 7 > 0 such that By (0,7) C T'(U(1)). This implies that we have

(2.1) By (0,7/2%) C T(U(1/2k))




forall k=0,1,2....

Claim 2 : D := By (0,7) C T(U(3)).

Let y € D. By Eq 2.1, there is 1 € U(1) such that ||y — T'(z1)|| < r/2. Then by using Eq 2.1
again, there is 2o € U(1/2) such that ||y — T'(x1) — T'(z2)|| < r/22. To repeat the same steps, there
exists is a sequence (z3) such that z; € U(1/2%"1) and

ly —T(x1) — T(x2) — ... — T(zp)|| < 7"/2’“

for all k. On the other hand, since > [|zx|| < >_1/2% and X is Banach,  := Y 32, o exists in X
and ||z| < 3°7°,1/2F71 = 2. This implies that y = T'(z) and ||z|| < 3.
Thus we the result follows. O

Theorem 2.2. Open Mapping Theorem : Retains the notation as in Lemma 2.1. Then T is
an open mapping.

Proof. By Lemma 2.1, we first note that for every r > 0, there is 6 > 0 such that By (0,9) C
T(Bx(0,7)). Let U be an open subset of X and let b € T(U). We need to show that b is an
interior point of T(U). Let a € U such that T'(a) = b. Since U is open, there is r > 0 such that
a+ B(0,r) = B(a,r) CU. Then B(0,7) = B(a,r) — a. Choosing § > 0 as above, hence we have

B(0,6) € T(B(0,1)) = T(B(a,r)) — T(a) € T(U) — b
This implies that b+ B(0,r) C T'(U). The proof is finished. O

Proposition 2.3. Let T be a bounded linear isomorphism between Banach spaces X and Y. Then
T~ must be bounded. Consequently, there are c1,co > 0 such that c1|| - || < [|T()|| < ezl - || on X.

3. CLOSED GRAPH THEOREM

Let T: X — Y. The graph of T, write G(T') is defined by the set {(z,y) € X xY : y =T (z)}.
Now the direct sum X @Y is endowed with the norm || - ||, that is ||z ® y||s := max(||z| x, [|y|v)-
We also write X @oo ¥ when X @Y is equipped with this norm.

We say that an operator 7' : X — Y is said to be closed if its graph G(7") is a closed subset of
X @ Y, that is, if a sequence (z,,) of X satisfying the condition ||(zn,Tx,) — (2,y)|c — 0 for
some z € X and y € Y implies T'(z) = y.

Theorem 3.1. Closed Graph Theorem : Let T : X — Y be a linear operator from a Banach
space X to a Banach'Y. Then T is bounded if and only if T is closed.

Proof. The part (=) is clear.
Assume that T is closed, that is, the graph G(T') is || - [|co-closed. Define || - || : X — [0, 00) by

lzllo = llzll + [T ()l

for x € X. Then || - |jp is a norm on X. Let I : (X, - |lo) — (X, || - ||) be the identity operator. It
is clear that I is bounded since || - || < - lo-

Claim: (X, || - ||o) is Banach. In fact, let (z,,) be a Cauchy sequence in (X, || - ||p). Then (z,) and
(T'(zy)) both are Cauchy sequences in (X, || - ||) and (Y,]| - ||y). Since X and Y are Banach spaces,
there are © € X and y € Y such that ||z, — z||x — 0 and [|T(x,) — y|ly — 0. Thus y = T'(x) since
the graph §(T) is closed.

Therefore 171 : (X, ||-|) — (X, |- ||o) is bounded by Proposition 2.3. Thus if z,, — 0 in (X, || - ||),
then T'(x,) — 0in Y. So, T is bounded. The proof is finished. O

Example 3.2. Let D := {c = (c,) € £? : Y. n?|c,|? < o0}. Define T : D — £2 by T(c) = (ncy).
Then T is an unbounded closed operator.

Proof. Note that since ||Te,|| = n for all n, T is not bounded. Now we claim that 7" is closed.

Let (x;) be a convergent sequence in D such that (7'x;) is also convergent in £2. Write x; = (2;,)5%;

with limx; = x := (z,) in D and imTx; = y := (y,) in £2. This implies that if we fix ng, then
(2 7
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lim x; ,, = Tp, and imnex;n, = Yn,. This gives noxn, = Yn,- Thus Tx =y and hence T is
(2 (]
closed. ]

Example 3.3. Let X := {f € C*(0,1)NC>(0,1): f' € C?0,1)}. And X is endowed with || - ||oo-
Define T : f € X v ' € C*(0,1). Then T is a closed unbounded operator.

Proof. Note that if a sequence f, — f in X and f. — g in C%(0,1). Then f' = g. Hence T is
closed. In fact, if we fix some 0 < ¢ < 1, then by the Fundamental Theorem of Calculus, we have

0= lim(fu(a) — f(a)) = lin( [ (4200~ £V = [ (6(0) — F©)a

for all z € (0,1). This implies that we have [ g(t)dt = [ f'(t)dt. So g = f" on (0,1).
On the other hand, since ||Tz"||s = n for all n € N. Thus 7" is unbounded as desired. O

4. UNIFORM BOUNDEDNESS THEOREM

Theorem 4.1. Uniform Boundedness Theorem : Let {T; : X — Y : i € I} be a family of
bounded linear operators from a Banach space X into a normed space Y. Suppose that for each
x € X, we have sup ||T;(x)|| < co. Then sup ||T;|| < oo.

el el
Proof. For each z € X, define

[[lo := max([|]|, sup || Ti (z)])-

el
Then || - |jo is a norm on X and || - || < || - |lo on X. If (X,] - [jo) is complete, then by the Open
Mapping Theorem. This implies that || - || is equivalent to | - ||o and thus there is ¢ > 0 such that

1T5()[ < Sup 1T ()| < l[xflo < efl]|
(2

for all € X and for all j € I. So ||T}|| < c for all j € I is as desired.

Thus it remains to show that (X, || - |lo) is complete. In fact, if (z,) is a Cauchy sequence in
(X, ]]]lo), then it is also a Cauchy sequence with respect to the norm ||-|| on X. Write z := lim,, z,,
with respect to the norm || - ||. Also for any € > 0, there is N € N such that ||T;(xy, — zn)|| < €
for all m,n > N and for all i € I. Now fixing ¢ € I and n > N and taking m — oo, we have
| Ti(xr, — x)|| < e and thus sup,c; || Ti(zn — )| < € for all n > N. So we have ||z, — z|lo — 0 and
hence (X, || - |jo) is complete. The proof is finished. O

Remark 4.2. Consider coo := {x = (z,,) : 3 N,V n > N;z, = 0} which is endowed with | - ||cc-
Now for each k € N, if we define Ty, € ¢y by Ti((xy)) := kxg, then supy [Ti(x)| < oo for each
x € coo but (|| Tk||) is not bounded, in fact, |Tx|| = k. Thus the assumption of the completeness of
X in Theorem 4.1 is essential.

Corollary 4.3. Let X and Y be as in Theorem 4.1. Let T : X — Y be a sequence of bounded
operators. Assume that limy Ty (z) exists in Y for all x € X. Then there is T € L(X,Y) such that
limg, [[(T — Tk)z|| = 0 for all x € X. Moreover, we have ||T|| < limkinf I Tx]|-

5. WEAKLY CONVERGENT AND WEAK* CONVERGENT

Proposition 5.1. Let (x,) be a sequence in a normed space X . If lim f(x,) exists for all f € X*,
n

then (x,,) is a bounded sequence.

Remark 5.2. Note that although lim f(x,,) exists for all f € X* in Corollary 5.2, it does not imply
that (z,) is convergent.

For example, consider X = cy and (e,). Then f(en) — 0 for all f € ¢y = ¢+ but (e,) is not
convergent in cg.
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Definition 5.3. Let X be a normed space. A sequence (xy,) is said to be weakly convergent if there
is x € X such that f(xy) — f(x) for all f € X*. In this case, x is called a weak limit of (x,,).

Proposition 5.4. A weak limit is unique. In this case, if (x,,) weakly converges to x, write x = w-
limz, or x, — x.
n

Remark 5.5. It is clear that if a sequence (x,) converges to x € X in norm, then x, = .
Howewver, the converse does not hold following from Remark 5.2.

Proposition 5.6. Suppose that X is finite dimensional. A sequence (x,) in X is norm convergent
if and only if it is weakly convergent.

Proof. Suppose that (z,,) weakly converges to z. Let B := {ey,..,en} be a base for X and let f; be
the k-th coordinate functional corresponding to the base B, that is v = Zszl fr(v)ex for all v € X.
Since dim X < oo, we have f in X* for all £ = 1,..., N. Therefore, we have lim,, fx(z,) = fi(x)
for all k =1,..., N. So, we have ||z, — x| — 0. O

Definition 5.7. Let X be a normed space. A sequence (f,) in X* is said to be weak® convergent
if there is f € X* such that lim,, f,(z) = f(z) for all x € X, that is f, point-wise converges to f.

In this case, f is called the weak* limit of (fn). Write f = w*-lim, f,, or fy w, f-

Remark 5.8. In the dual space X* of a normed space X, we always have the following implications:
“Norm Convergent” = “Weakly Convergent” —> “Weak* Convergent”.

However, the converse of each implication does not hold.

Example 5.9. Remark 5.2 has shown that the w-convergence does not imply || - ||-convergence.
We now claim that the w*-convergence Does Not imply the w-convergence.

Consider X = cy. Then ¢}y = ¢* and cf* = (£1)* = (2. Let ¢}, = (0,...0,1,0...) € * = ¢}, where
the n-th coordinate is 1. Then e ~— 0 but €, - 0 weakly because e**(e) = 1 for all n, where
e = (1,1,...) € £>° = ¢j*. Hence the w*-convergence does not imply the w-convergence.

Proposition 5.10. Let (f,) be a sequence in X*. Suppose that X is reflexive. Then f, — f if

and only if fn N f.
In particular, if dim X < oo, then the followings are equivalent:

(i) : oL £,
(ii) : fn ﬂ fns
(iii) : frn == fn.

Proposition 5.11. (Banach) : Let X be a separable normed space. If (fy,) is a bounded sequence
in X*, then it has a w*-convergent subsequence.

Proof. Let D := {z1,x2,...} be a countable dense subset of X. Note that since (f,)52 is bounded,
(fn(z1)) is a bounded sequence in K. Then (f,(x1)) has a convergent subsequence, say (f1(21))52,
in K. Let f(z1) := limg fix(x1). Now consider the bounded sequence (fi(x2)). Then there is
convergent subsequence, say (f2x(z2)), of (fir(x2)). Put f(x2) := limy fo x(z2). Notice that we
still have f(x1) = limy fox(21). To repeat the same step, if we define (m, k) < (m/, k') it m < m/;
or m =m/ with k < k', we can find a sequence (fy, x)mr in X* such that

(1) : (fimt1,6)72 is a subsequence of (fm, k)52, for m = 0,1, .., where fo 1 := f.

(ii) : f(x;) = limy fr k(x;) exists for all 1 <i < m.
Now put hp, = fmm- Then (hy,) is a subsequence of (f,). Notice that for each i, we have
limy,, b (z3) = limy, fim(zi) = f(x;) by the construction (ii) above. Since (||hyp]|) is bounded
and D is dense in X, we have h(x) := lim,, h,,(x) exists for all x € X and h € X*. That is
h = w*-lim,,, h,,. The proof is finished. ]
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Remark 5.12. Theorem 5.11 does not hold if the separability of X is removed. For example,
consider X = (> and 6,, the n-th coordinate functional on £>°. Then §, € (£>°)* with ||6,] =1 for
all n. Suppose that (0,) has a w*-convergent subsequence (0p, )7 Define x = (x,,) € £>° by

0 if m # ng;
Tm = (1 if m = noy;
-1 if M= nog41.

Hence we have |6, (X) — 0p,,, (x)| =2 for all i = 1,2, ... It leads to a contradiction. So (5,) has no
w*-convergent subsequence.

Corollary 5.13. Let X be a separable space. In X* assume that the set of all w*-convergent
sequences coincides with the set of all normed convergent sequences, that is a sequence (fy) is
w*-convergent if and only if it is norm convergent. Then dim X < oo.

Proof. It needs to show that the closed unit ball Bx+ in X* is compact in norm. Let (f,) be a
sequence in Bx«. Using Theorem 5.11, (fy) has a w*-convergent subsequence (fy,, ). Then by the
assumption, (fy,) is norm convergent. Note that if li]£n Jn, = [ in norm, then f € Bx=+. So Bx~ is

compact and thus dim X* < co. So dim X** < oo that gives dim X is finite because X C X**. [

6. GEOMETRY OF HILBERT SPACE I
We first recall the following useful properties of an inner product space:

Proposition 6.1. Let V be an inner product space. For oall z,y € V, we always have:

(i): (Cauchy-Schwarz inequality): |(z,y)| < ||z||||y]| Consequently, the inner product on
V XV 1s jointly continuous.
(ii): (Parallelogram law): ||z + y||* + ||z — y||* = 2[|=|* + 2|y|?
Furthermore, a norm || -| on a vector space is induced by an inner product if and only if it satisfies
the Parallelogram law.

Proposition 6.2. (Bessel's inequality) : Let {e1,...,en} be an orthonormal set in an inner
product space V. Then for any x € V', we have

N
>l e)? < .
i=1

Proof. It can be obtained by the following equality immediately

N N

lz = (w,e)esl)” = l|=[1* = > |z, )]
i=1 i=1
O
Corollary 6.3. Let (e;)ier be an orthonormal set in an inner product space V. Then for any
element x € V, the set
{iel:(e,x)#0}

is countable.

Proof. Note that for each x € V', we have

oo
{i€I:(eax)#0}=|J{iel:|(e2)>1/n}.
n=1
Then the Bessel’s inequality implies that the set {i € I : |(e;,z)| > 1/n} must be finite for each
n > 1. So the result follows. O

In the rest of this section, X always denotes a complex Hilbert space with an inner product (-, -).
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Proposition 6.4. Let (e,) be a sequence of orthonormal vectors in a Hilbert space X. Then for
any x € V, the series Y 7 | (x, en)ey is convergent.

Moreover, if (ey(n)) s a rearrangement of (en), that is, o : {1,2..} — {1,2,..} is a bijection.
Then we have

Z(I" en)en = Z(l‘, eo(n))eo(n)'
n=1 n=1

Proof. Since X is a Hilbert space, the convergence of the series Y -2 (z,e,)e;, follows from the

Bessel’s inequality at once. In fact, if we put s, := > P _ (z,e,)e,, then we have

lspre —spl> = D (e
p+1<n<p+k
Now put y = 372 | (z,en)en and 2z = 307 (T, €5(p) )€o(n)- Notice that we have

N N

(y7 Yy — Z) = h]{[n(Z('xa €n)6n, Z($7 en)en - Z)

n=1 n=1
N

N
T 2 1
_h]{[nnz::l‘(x)en” hj{/vnnzz:l(l’,en)

N
(x, e,)]? — lim Z(m, en)(x,e,) (N.B: for each n, there is a unique j such that n = o(5))
n=1

WE

(2, €5())(en; €0 (5))

j=1

ol

N
1

I
=i

Similarly, we have (z,y — z) = 0. The result follows. O

A family of an orthonormal vectors, say B, in X is said to be complete if it is maximal with
respect to the set inclusion order,that is, if € is another family of orthonormal vectors with B C C,
then B = C.

A complete orthonormal subset of X is also called an orthonormal base of X.

Proposition 6.5. Let {e;}icr be a family of orthonormal vectors in X. Then the followings are
equivalent:
(i): {eitier is complete;
(ii): if (x,e;) =0 for alli € I, then x = 0;
(iii): for any x € X, we have x =), ;(x,e;)e;;
(v): for any x € X, we have ||z||* = 3, |(z, e:)]?.

In this case, the expression of each element x € X in Part (iii) is unique.

Note : there are only countable many (x,e;) # 0 by Corollary 6.3, so the sums in (iii) and (iv)
are convergent by Proposition 6.4.

Proposition 6.6. Let X be a Hilbert space. Then
(i) : X processes an orthonormal base.

(11) : If {e;}icr and {f;};cs both are the orthonormal bases for X, then I and J have the same
cardinality. In this case, the cardinality |I| of I is called the orthonormal dimension of X.

Proof. Part (i) follows from Zorn’s Lemma at once.
For part (ii), if the cardinality |I| is finite, then the assertion is clear since |I| = dim X (vector
space dimension) in this case.
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Now assume that |I| is infinite, for each e;, put Je, :== {j € J : (s, fj) # 0}. Note that since {e; }ics
is maximal, Proposition 6.5 implies that we have

{fj}jEJ - UJei'
el
On the other hand, we have seen that We have seen that J., is countable for each e;. So we have
IN| < |I| because |I| is infinite and thus |N x I| = |I|. Then we have

1< el = SN = N x 1] = |1,

il il

From symmetry argument, we also have |I| < |J|. O

Remark 6.7. Recall that a vector space dimension of X is defined by the cardinality of a mazximal
linearly independent set in X.

Notice that if X is finite dimensional, then the orthonormal dimension is the same as the vector
space dimension.

Also, the vector space dimension is larger than the orthornormal dimension in general since every
orthogonal set must be linearly independent.

We say that two Hilbert spaces X and Y are said to be isomorphic if there is linear isomorphism
U from X onto Y such that (Uz,Uz’) = (z,2') for all z,2’ € X. In this case U is called a unitary
operator.

Theorem 6.8. Two Hilbert spaces are isomorphic if and only if they have the same orthonornmal
dimension.

Proof. The converse part (<) is clear.

Now for the (=) part, let X and Y be isomorphic Hilbert spaces. Let U : X — Y be a unitary.
Note that if {e;}ier is an orthonormal base of X, then {Ue;};cs is also an orthonormal base of Y.
Thus the necessary part follows from Proposition 6.6 at once. ]

Corollary 6.9. Every separable Hilbert space is isomorphic to £ or C* for some n.

Proof. Let X be a separable Hilbert space.

If dim X < oo, then it is clear that X is isomorphic to C" for n = dim X.

Now suppose that dim X = oo and its orthonormal dimension is larger than |N|, that is X has an
orthonormal base {f;}ic; with |I| > |N|. Note that since || f; — fj|| = /2 for all 4,5 € I with i # j.
This implies that B(e;, 1/4) N B(e;,1/4) = 0 for i # j.

On the other hand, if we let D be a countable dense subset of X, then B(f;,1/4) N D # () for all
i € 1. So for each i € I, we can pick up an element x; € D N B(f;,1/4). Therefore, one can define
an injection from I into D. It is absurd to the countability of D. 0

7. GEOMETRY OF HILBERT SPACE II

In this section, let X always denote a complex Hilbert space.

Proposition 7.1. If D is a closed convex subset of X, then there is a unique element z € D such
that

|z|| = inf{||z| : = € D}.
Consequently, for any element u € X, there is a unique element w € D such that

lu — w|| = d(u, D) := inf{||u — z|| : € D}.



Proof. We first claim the existence of such z.
Let d := inf{||z|| : # € D}. Then there is a sequence (x,) in D such that ||z,| — d. Notice that
(z5,) is a Cauchy sequence. In fact, the Parallelogram Law implies that

Im — Tn xm“‘anQS

= 5
as m,n — 0o, where the last inequality holds because D is convex and hence %(xm +x,) € D. Let
z = lim, x,,. Then ||z|| = d and z € D because D is closed.
For the uniqueness, let z,z’ € D such that ||z|| = ||2/|| = d. Thanks to the Parallelogram Law
again, we have

1 1 1 1
I2 = Sllzml? + Szl ~ | Slamll? + 5[zl — d — 0

/ !/
=20 Lo L e 2tz Lo 1,0
I - — < = - —d=0.
15212 = S0 + 5102 = 1E5 22 < S el + 5021
Therefore z = 2/.
The last assertion follows by considering the closed convex set u — D immediately. O

Proposition 7.2. Suppose that M is a closed subspace. Letu € X andw € M. Then the followings
are equivalent:

(1): Nlu—wll = d(u, M);

(ii): w—w L M, that is (u —w,x) =0 for all x € M.
Consequently, for each element uw € X, there is a unique element w € M such that w —w 1 M.
Proof. Let d := d(u, M).
For proving (i) = (i¢), fix an element x € M. Then for any ¢ > 0, note that since w + tz € M, we
have

d? < |lu—w—tz||* = ||lu—w|?®+ ||tz||* = 2Re(u — w, tz) = d* + ||tz|*> — 2Re(u — w, tx).
This implies that
(7.1) 2Re(u — w, z) < t||z|?
for all t > 0 and for all z € M. So by considering —z in Eq.7.1, we obtain
2|Re(u — w, z)| < t|z|?.

for all t > 0. This implies that Re(u — w,x) = 0 for all x € M. Similarly, putting +iz into Eq.7.1,
we have I'm(u — w,z) = 0. So (i) follows.

For (ii) = (i), we need to show that ||u—w||? < ||u—x||? for all z € M. Note that since u—w 1 M
and w € M, we have u —w 1L w — x for all x € M. This gives

lu = 2] = [l(w = w) + (w = 2)|* = Ju— wl* + fw - 2* > [lu—w]|?

Part (i) follows.
The last statement is obtained by Proposition 7.1 immediately. [l

Theorem 7.3. Let M be a closed subspace. Put
Mt ={zeX: 21l M}

Then M* is a closed subspace and we have X = M & M*.
In this case, M+ is called the orthogonal complement of M.

Proof. Tt is clear that M~ is a closed subspace and MMM+ = (0). It remains to show X = M +M*.
Let v € X. Then by Proposition 7.2, we can find an element w € M such that « —w L M. Thus
u—w € M* and u = w+ (u — w). The proof is finished. O

Corollary 7.4. With the notation as above, an element xo ¢ M if and only if there is an element
m € M such that xo —m 1L M.

Proof. 1t is clear from Theorem 7.3. 0
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Corollary 7.5. If M is a closed subspace of X, then M+ = M.

Proof. Tt is clear that M C M=+ by the definition of ML, Now if there is x € M++\ M, then
by the decomposition X = M @ M~ obtained in Theorem?7.3, we have = y + z for some y € M
and z € M*. This implies that z = 2 —y € M+ N M++ = (0). This gives z = y € M. It leads to
a contradiction. g

Remark 7.6. It is worthwhile pointing out that for a general Banach space X and a closed subspace
M of X, it May Not have a complementary Closed subspace N of M, that is X = M & N. If
M has a complementary closed subspace X, we say that M is complemented in X.

Example 7.7. (Very Not Obvious !!!) ¢q is not complemented in ¢>°.

8. RIESZ REPRESENTATION THEOREM
Let X be a complex Hilbert space as before.

Theorem 8.1. Riesz Representation Theorem : For each f € X*, then there is a unique
element vy € X such that

f(@) = (z,vy)
for all x € X and we have || f|| = |lvs]|.
Furthermore, if (€;)icr is an orthonormal base of X, then vy =), f(e;)e;.

Proof. We first prove the uniqueness of vy. If z € X also satisfies the condition: f(z) = (z, 2) for
all x € X. This implies that (z,z —vy) =0 for all z € X. So z —vy = 0.
Now for proving the existence of vy, it suffices to show the case || f|| = 1. Then ker f is a closed
proper subspace. Then by the orthogonal decomposition again, we have

X =ker f @ (ker f)*.

Since f # 0, we have (ker f)* is linear isomorphic to C. Also note that the restriction of f
on (ker f)* is of norm one. Hence there is an element vy € (ker f)1 with [[vf|| = 1 such that
fr) = 1 flxer 21l = 1 and (ker f)+ = Cuvy. So for each element x € X, we have x = z + av; for
some z € ker f and a € C. Then f(z) = af(vy) = a = (z,vf) for all z € X.

Concerning about the last assertion, if we put vy = Zaiei, then f(e;) = (ej,vy) = @; for all

el
j € I. The proof is finished. O

Corollary 8.2. With the notation as in Theorem 8.1, Define the map
O:fe X" —uvrelX,

that is f(z) = (x, ®(f)) for allxz € X and f € X*.
And if we define (f,g)x+ = (vg,vf)x for f,g € X*. Then (X*,(-,-)x*) becomes a Hilbert space.
Moreover, ® is an anti-unitary operator from X* onto X, that is ® satisfies the conditions:

O(af + Bg) =a®(f) + B2(9) and (2f,g)x = (g, f)x-
forall f,ge X* and o, € C.

Proof. The result follows immediately from the observation that vy, = vy 4+ v4 and v,y = Qv for
all f € X* and a € C. O

Corollary 8.3. FEvery Hilbert space is reflexive.
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Proof. Let X be a Hilbert space as before. Let ® : X* — X and ®* : X** — X* be the
anti-unitaries given by the Riesz Representation Theorem. If we put j and j* be the inverse of ®
and ®* respectively, then j and j* are clearly given by

(@) (y) = (y,2)x and (5°(f))(9) = (g, [)x-
for x,y € X and f,g € X*.
Now if we let i : X — X™* be the canonical embedding, that is, (i(x))(f) := f(x) for z € X and
f € X*, then it suffices to show that
i=j"oj
In fact, for z € X and f € X*, we have
(" e g@)(f) = (f,i(x)x = (®(i(2)), 2(f))x = (z, ®(f))x = f(z) = (i(x))(f)-
The proof is finished. ]

Theorem 8.4. Fvery bounded sequence in a Hilbert space has a weakly convergent subsequence.

Proof. Let (x,) be a bounded sequence in a Hilbert space X and M be the closed subspace of X
spanned by {z,, : m =1,2...}. Then M is a separable Hilbert space.

Method I: Let jy : @ € M +— jp(x) := (-,x) € M* be the mapping defined as in Corollary 8.3.
Then (jar(xy)) is a bounded sequence in M*. By Banach’s result, Proposition 5.11, (jas(xy)) has
a w*-convergent subsequence (jas(zn,)). Put jar(zn,) v, f € M*, that is jar(zp, )(2) = f(2) for
all z € M. The Riesz Representation will assure that there is a unique element m € M such that
Jjm(m) = f. So we have (2,2, ) — (z,m) for all z € M. In particular, if we consider the orthogonal
decomposition X = M @ M~ then (z,x,,) — (x,m) for all z € X and thus (z,,,2) — (m, ) for
all z € X. Then x,, — m weakly in X by using the Riesz Representation Theorem again.
Method II : We first note that since M is a separable Hilbert space, the second dual M** is also
separable by the reflexivity of M. So the dual space M* is also separable (see Propositionl.5). Let
Q : M — M** be the natural canonical mapping. To apply the Banach’s result Proposition 5.11
for X*, then Q(x,) has a w*-convergent subsequence, says Q(zy,). This gives an element m € M
such that Q(m) = w*-lim; Q(zy,) because M is reflexive. So we have f(x,,) = Q(zn,)(f) —
Q(m)(f) = f(m) for all f € M*. Using the same argument as in Method I again, x,, weakly
converges to m as desired. O

Remark 8.5. It is well known that we have the following Theorem due to R. C. James (the proof
is highly non-trivial):

A normed space X is reflexive if and only if every bounded sequence in X has a weakly convergent
subsequence.

Theorem 8.4 can be obtained by the James’s Theorem directly. However, Theorem 8.4 gives a simple
proof in the Hilbert space case.

9. OPERATORS ON A HILBERT SPACE

Throughout this section, all spaces are complex Hilbert spaces. Let B(X,Y’) denote the space
of all bounded linear operators from X into Y. If X =Y, write B(X) for B(X, X).
Let T € B(X,Y). We will make use the following simple observation:

(9.1) (Tz,y)=0forallz € X;yeY ifandonlyif T =0.
Therefore, the elements in B(X,Y) are uniquely determined by the Eq.9.1, that is, T = S in
B(X,Y) if and only if (Tx,y) = (Sz,y) for all z € X and y € Y.

Proposition 9.1. Let T € B(X). Then we have
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(i): T =0 if and only if (Tx,x) =0 for allz € X.
(ii): | TN = sup{|(Tz, y)| : 2,y € X with ||z]| = [ly[| = 1}.

Proof. Tt is clear that the necessary part in Part (i). Now we are going to the sufficient part in
Part (4), that is we assume that (Tz,z) = 0 for all € X. This implies that we have

0= (T(x+iy),z+1iy) = (Tx,z) +i(Ty,x) —i(Tx,y) + (Tiy,iy) = i(Ty,x) —i(Tz,y).
So we have (Ty,z)— (T'z,y) = 0 for all z,y € X. In particular, if we replace y by iy in the equation,
then we get i(Ty,z) — i(Tx,y) = 0 and hence we have (T'y,z) + (Tx,y) = 0. Therefore we have
(Tz,y) = 0.
For part (ii) : Let a = sup{|(Tz,y)| : =,y € X with ||z|| = ||y|| = 1}. It is clear that we have
IT|| > . It needs to show ||T]| < a.
In fact, for each z € X with ||z|| = 1, then by the Hahn-Banach Theorem, there is f € X* with
IIfll = 1 such that f(T'z) = ||Tz||. The Riesz Representation Theorem, we can find an element
yr € X with |ly¢]| = || f]| = 1 so that we have |Tz|| = f(Tz) = (x,yf) < « for all z € X with
|lz|| = 1. This implies that ||T'|| < a. The proof is finished. O

Proposition 9.2. Let T' € B(X). Then there is a unique element T* in B(X) such that
(9-2) (Tz,y) = (z,T"y)
In this case, T™ is called the adjoint operator of T.

Proof. We first show the uniqueness. Suppose that there are Sj, Sy in B(X) which satisfy the
Eq.9.2. Then (z, S1y) = (x, Soy) for all z,y € X. Eq.9.1 implies that S; = Ss.

Finally, we prove the existence. Note that if we fix an element y € X, define the map f,(z) :=
(Tz,y) for all x € X. Then f, € X*. The Riesz Representation Theorem implies that there is a
unique element y* € X such that (Tz,y) = (z,y*) for all z € X and ||fy|| = ||y*||. On the other
hand, we have

[fy(@)| = [Tz, y)| < | T|ll|llllyl

for all z,y € X and thus || f,|| < ||T|||y||. If we put T*(y) := y*, then T* satisfies the Eq.9.2. Also,
we have |7y = [ly*|l = £, < IT][yll for all y € X. So T* € B(X) with |T*| < |T]| indecd.
Hence T is as desired. O

Proposition 9.3. Let T, S € B(X). Then we have

(1): T* € B(X) and | T| = ||T]|.
(ii): The map T € B(X) — T* € B(X) is an isometric conjugate anti-isomorphism, that is,

(aT + BS)* =aT* + BS* forall a,3€C; and (TS)*=S*T*.
(iii): | T*T|| = | T||*.

Proof. For Part (i), in the proof of Proposition 9.2, we have shown that ||[7%| < ||T'||. And the
reverse inequality clearly follows from 77" =T

The Part (ii) follows from the adjoint operators are uniquely determined by the Eq.9.2 above.
For Part (iii), we always have ||[T*T|| < || T*||||T|| = || T||?>. For the reverse inequality, let (x,) be a
sequence in Bx such that || Tz, | — ||T']|. Since

HT%HZ = (Tay, Tzn) = (T Tn, xp) < [T Tzp|||zn]| < (77T,

we have ||T|> < || T*T). O

Example 9.4. If X = C" and D = (aij)nxn an n x n matric, then D* = (@j;)nxn. In fact, notice
that

CLjZ‘ = (Dei,ej) = (ei,D*ej) = (D*ej,ei).
So if we put D* = (dij)nxn, then dij = (D*e;, e;) = aj;.
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Example 9.5. Let ?(N) := {z : N — C: > 2 |z(i)]* < co}. And put (z,y) = Zz(z)m

Define the operator D € B(f?(N)) (called the unilateral shift) by

Dz(i) =x(i— 1)
fori € N and where we set x(—1) := 0, that is D(z(0),z(1),...) = (0,z(1),z(2),....).
Then D is an isometry and the adjoint operator D* is given by

D*z(i) :=x(i+1)

fori=0,1,.., that is D*(z(0),z(1),...) = (z(1),z(2),....).
Indeed one can directly check that

(Dz,y) =Y a(i—1y(@) =Y 2(j)y(j +1) = (z, D*y).
i=0 Jj=0

Note that D* is NOT an isometry.

Example 9.6. Let (>°(N) = {z : N — C : sup;>( |z(i)| < 0o} and ||z||c := sup;>q |z(i)|. For each
x € £, define M, € B({*(N)) by - -
My(§) :==w-¢
for € € (A(N), where (z - &)(i) := x(i)&(i); i € N.
Then | M| = ||z|lcc and M} = Mg, where T(i) == ().

10. BOUNDED OPERATORS ON A HILBERT SPACE II
Throughout this section, all spaces are complex Hilbert spaces.

Definition 10.1. Let T € B(X) and let I be the identity operator on X. T is said to be
(i) : selfadjoint if T* =T
(ii) : normal if T*T = TT*;
(iii) : unitary iof T*T =TT* =1.
Proposition 10.2. We have
(i) : Let T : X — X be a linear operator. T is selfadjoint if and only if

(10.1) (Tz,y) = (z,Ty) forall xz,y € X.
(ii) : T is normal if and only if |Tz| = || T*z|| for all x € X.

Proof. The necessary part of Part (i) is clear.

Now suppose that the Eq.10.3 holds, it needs to show that 71" is bounded.

For using the Closed Graph Theorem, we have to show if the sequences z,, — x and y,, — y, implies
Tz =vy. In fact, for any z € X, we have (z,Tx,) — (z,y) and the Eq.10.3 gives

(z,Txy) = (Tz,2y) = (Tz,x) = (2,Tx).

So we have (z,Tz) = (z,y) for all z € X and thus Tz = y. Therefore the Closed Graph Theorem
will imply 7" being bounded immediately.
For Part (ii), note that by Proposition 9.1, T is normal if and only if (T*Tx,z) = (TT*z,z). So,
Part (ii) follows from that

|Tz)|? = (Tx, Tx) = (T*Tz,z) = (TT*z,2) = (T*z, T*z) = || T*z|?

for all z € X. OJ
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Proposition 10.3. Let T € B(X). Then we have
ker T = (imT*)*  and (kerT)* = imT*
where im1 denotes the image of T.

Proof. The first equality is clearly follows from x € ker T" if and only if 0 = (T'z, z) = (z,T"%) for
all z € X.

On the other hand, it is clear that we have M* = M for any subspace M of X. This together
with the first equality and Corollary7.5 will yield the second equality at once. O

Proposition 10.4. Let (E,| - ||) be a Banach space. Let M and N be the closed subspaces of E
such that

E=M®&N .. ........... (*)

Define an operator Q : E — E by Q(y+z2) =y fory € M and z € N. Then @Q is bounded. In
this case, Q) is called the projection with respect to the decomposition (x).

Furthermore, if E is a Hilbert space, then N = M=+ (and hence (%) is the orthogonal decomposition
of E with respect to M) if and only if Q satisfies the conditions: Q> = Q and Q* = Q. And Q is
called the orthogonal projection (or projection for simply) with respect to M.

Proof. For each z € E, write x = y + z for y € M and z € N with respect to the decomposition
(%) above. And put ||z||1 = |ly|| + ||z||. Then |- |1 is a norm on E. It is clear that @ is bounded
with respect to the norm || - ||;. So, the result follows if two norms || - || and || - ||; are equivalent.
In fact, since || - || < || - |1, then by the Open Mapping Theorem, it suffices to show that | - ||1 is
also a complete norm. Let (z,) be a Cauchy sequence in E with respect to the norm || - ||;. Write
Tp = Yn + 2p for y, € M and z, € N. Then (y,) and (z,) both are the Cauchy sequences with
respect to the original norm | - ||. Since M and N are closed, there are y € M and z € N such that
yn — y and z, — z with respect to the norm || - ||. This gives =, = yn + 2, — y + 2z in the norm
[Rale

For the last assertion, we further assume that E is a Hilbert space.

It is clear from the definition of @ that Q(y) =y and Q(z) =0 for all y € M and z € N. Thus we
have Q2 = Q.

Now if N = M, then for v,y € M and 2,2’ € N, we have

Qy+2),y +2)=wy)=W+2QW +7)).

So Q* = Q.
The converse of the last statement follows from Proposition 10.3 at once because ker Q = N and
im@Q = M.
The proof is complete. O]

Proposition 10.5. When X is a Hilbert space, we put M the set of all closed subspaces of X and
P the set of all orthogonal projections on X. Now for each M € M, let Py; be the corresponding
projection with respect to the orthogonal decomposition X = M @ M~+. Then there is an one-one
correspondence between M and P which is defined by

MeM— Py eP.

Furthermore, if M, N € M, then we have

(Z) M g N if and only ifPMPN = PNPM = PM.
(i) : M LN if and only if PyyPy = PyPy = 0.
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Proof. Tt first follows from Proposition 10.4 that Py, € P.

Indeed the inverse of the correspondence is given by the following. If we let Q € P and M =
Q(X), then M is closed because M = ker(I — @) and I — @ is bounded. Also it is clear that
X =Q(X)® (I — Q)X with kerQ = M*. Hence M is the corresponding closed subspace of X,
that is M € M and Py = @ as desired.

For the final assertion, Part (i) and (ii) follow immediately from the orthogonal decompositions
X = M@M+ = NN+ and together with the clear facts that M C N if and only if N* € M+, O

11. SPECTRAL THEORY I

Definition 11.1. Let E be a normed space and let T € B(FE). The spectrum of T, write o(T), is
defined by
o(T):={Ae C: T — Al is not invertible in B(E)}.

Remark 11.2. More precise, for a normed space E, an operator T € B(E) is said to be invertible
in B(E) if T is an linear isomorphism and the inverse T~ is also bounded. However, if E is
complete, the Open Mapping Theorem assures that the inverse T~' is bounded automatically. So
if E is a Banach space and T € B(E), then X\ ¢ o(T) if and only if T — X\ :=T — X is an linear
isomorphism. So X lies in the spectrum o(T) if and only if T — X is either not one-one or not
surjective.

In particular, if there is a non-zero element v € X such that Tv = Av, then A € o(T) and X is
called an eigenvalue of T with eigenvector v.

We also write o,(T) for the set of all eigenvalue of T and call op(T') the point spectrum.

Example 11.3. Let E = C" and T = (aij)nxn € Mn(C). Then X € o(T) if and only if X is an
eigenvalue of T and thus o(T) = o, (T).

Example 11.4. Let E = (coo(N), || - ||so) (note that coo(N) is not a Banach space). Define the map
T: COQ(N) — Coo(N) by

for x € coo(N) and i € N.
Then T is bounded, in fact, ||Tx||c < ||%]|oo for all x € coo(N).
On the other hand, we note that if X € C and x € coo(N), then

1
T— =(——— .
(T = Na(k) = (g7 — M= (k)
From this we see that o,(T) = {1,%,%,...}. And if X ¢ {1,%,%,...}, then T — X\ is an linear
isomorphism and its inverse is given by
1
TN "tak) = (+—— — N z(k).
(T =X alk) = (g~ N a(b)

So, (T — X\)~! is unbounded if X = 0 and thus 0 € o(T).
On the other hand, if X # 0, then (T — \)~! is bounded. In fact, if X\ = a +1ib # 0, for a,b € R,

—al> + |b> > 0 because X ¢ {1, %, %7 ...}. This gives

then n := mkin|

1+k

1
T-N"Y =sup|(—— - N <n! <.
I =7 = supl G~V <

It can now be concluded that o(T) = {1, 3, 3,...} U{0}.

Proposition 11.5. Let E be a Banach space and T € B(E). Then
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(i) : I —T is invertible in B(E) whenever ||T| < 1.
(ii) : If [\ > ||T||, then X\ ¢ o(T).
(iii) : o(T) is a compact subset of C.
(iv) : If we let GL(E) the set of all invertible elements in B(E), then GL(E) is an open subset
of B(E) with respect to the || - ||-topology.

Proof. Notice that since B(FE) is complete, Part (i) clearly follows from the following equality
immediately:

I-T)YIT+T+T*+----- yrN-Y =N

for all N € N.

For Part (ii), if |A| > ||T]|, then by Part (i) , we see that I — 17 is invertible and so is A\I — T

This implies A ¢ o(T).

For Part (iii), since o(T") is bounded by Part (i), it needs to show that o(7') is closed.

Let ¢ € C\ o(T). It needs to find r > 0 such that u ¢ o(T) as |u — ¢| < r. Note that since T — ¢ is

invertible, then for 1 € C, we have T—p = (T'—c)—(u—c) = (T —c)(I—(u—c)(T—c)~1). Therefore,
1

if |(n—c)(T —¢)™Y|| < 1, then T — p is invertible by Part (7). So if we take 0 < r <

then r is as desired, that is, B(c,7) C C\ o(T"). Hence o(T) is closed.

For the last assertion, let ' € GL(E). Notice that for any S € B(FE), we have |T — S| <
ITINT = T71S]|. So if ||S]| <
B(T, i) € GL(E).

T
The proof is finished. ]

(T =)=

=k then T'— S is invertible by Part (i). Therefore we have

Corollary 11.6. If U is a unitary operator on a Hilbert space X, then o(U) C{A € C: |\ =1}.

Proof. Since ||U|| = 1, we have o(U) C {\ € C: |\| < 1} by Proposition 11.5(i7).
Now if |A| < 1, then |[AU*|| < 1. By using Proposition 11.5 again, we have I — AU* is invertible.
This implies that U — A\ = U(I — AU™) is also invertible and thus A ¢ o(U). O

Example 11.7. Let E = (*(N) and D € B(E) be the right unilateral shift operator as in Example9.5.
Recall that Dx(k) := x(k — 1) for i € N and x(—1) := 0. Then 0,(D) =0 and (D) = {\ € C:
A < 1}

We first claim that o,(D) = 0.

Suppose that A € C and x € ¢*(N) satisfy the equation Dx = A\x. Then by the definition of D, we
have

2k —1) = Ap(k)  eeeeeee (%)

for all k € N.

If X # 0, then we have z(k) = \~tzp_1 for all i € N. Since x(—1) = 0, this forces x(k) = 0 for all
i, that is * = 0 in £*(N).

On the other hand if A = 0, the Eq.(x) gives x(k — 1) =0 for all k and so x = 0 again.

Therefore o,(D) = ().

Finally, we are going to show (D) ={A € C: |\ <1}.

Note that since D is an isometry, ||D|| = 1. Proposition 11.5 tells us that

o(D) CT{AeC: |\ <1}

Notice that since op(D) is empty, it suffices to show that D — pu is not surjective for all pn € C with
lul < 1.

Now suppose that there is A € C with |A| < 1 such that D — X is surjective.

We consider the case when |\ =1 first.
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Let e; = (1,0,0,...) € ¢2(N). Then by the assumption, there is x € 2(N) such that (D — \)x = e;
and thus Dz = Ax 4 e1. This implies that
x(k —1) = Dxz(k) = Ax(k) + e1(k)
for all k € N. From this we have 2(0) = -\~ and x(k) = —A"F2(0) for all k > 1 because since
e1(0) =1 and e (k) =0 for all k > 1. Also since |\| = 1, it turns out that |x(0)| = |z(k)| for all
k>1. As z € (?(N), this forces x = 0. However, it is absurd because Dx = Az + e;.
Now we consider the case when || < 1.
Notice that by Proposition 10.3, we have
im(D — A = ker(D — A\)* = ker(D* — X).
Thus if D — X is surjective, we have ker(D* — X) = (0) and hence A ¢ o,(D*).
Notice that the adjoint D* of D is given by the left shift operator, that is,
D*gj(k;) = gj(k; —+ 1) ......... (**)
for all k € N.
Now when D*x = px for some u € C and x € (2(N), by using Eq.(x), which is equivalent to saying
that
z(k+1) = px(k)
for all k € N. So as |§| = [Al <1, if we set z(0) =1 and z(k +1) = ka(O) for all k > 1, then
z € (*(N) and D*x = Az. Hence X € 0,(D*) which leads to a contradiction.
The proof is finished.

12. SPECTRAL THEORY II
Throughout this section, let H be a complex Hilbert space.

Lemma 12.1. Let T € B(H). We have the following assertions.
(i) : T is selfadjoint if and only if (Txz,x) € R for all x € H.
(ii) : If T is selfadjoint, then ||T|| = sup{|(Tz,z)|: x € H with ||z|| = 1}.

Proof. Part (i) is clearly follows from Proposition9.1.
For Part (i7), if we let @ = sup{|(T'z,z)| : * € H with ||x|| = 1}, then it is clear that a < ||T||. We
now going to show the reverse inequality. For z,y € H with ||z| = |ly|| = 1, since T is selfadjoint,
one can directly check that
(T(x+y)z+y) — (T(x—y)z—y) =4Tz,y).
This implies that
a

a
(Tz,y)| < Sz +yl* + 2 = ol*) = 52 ]* + y]*) = a.

Since |T)| = sup [(Tx,y)|, we have ||T'|| < a as desired. The proof is finished. O
llell=[lyll=1

Lemma 12.2. Let T € B(H) be a normal operator (recall that T*T = TT*). Then T is invertible
in B(H) if and only if there is ¢ > 0 such that ||Tx|| > c||z|| for all z € H.

Proof. The necessary part is clear.

Now we are going to show the converse. We first to show the case when T is selfadjoint. It is clear
that T is injective from the assumption. So by the Open Mapping Theorem, it remains to show
that T is surjective.

In fact since ker T = imT*~ and T = T*, we see that the image of T is dense in H.

Now if y € H, then there is a sequence (z,) in H such that Tz, — y. So (Tz,) is a Cauchy
sequence. From this and the assumption give us that (x,) is also a Cauchy sequence. If z,
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converges to x € H, then y = Tz. Therefore the assertion is true when 7' is selfadjoint.

Now if T is normal, then we have ||T*z|| = ||Tz| > c¢||z|| for all x € H by Proposition 10.2(i7).
Therefore, we have ||T*Tz| > c||Txz| > c?||z|. Hence T*T still satisfies the assumption. Notice
that T*T is selfadjoint. So we can apply the previous case to know that 7T is invertible. This
implies that T is also invertible because T*T = TT™*.

The proof is finished. O

Definition 12.3. Let T € B(X). We say that T is positive, write T > 0, if (Tx,z) > 0 for all
r e H.

Remark 12.4. It is clear that a positive operator is selfadjoint by Lemma 12.1 at once.
And all projections are positive.

Proposition 12.5. Let T € B(H). We have
(i) : If T >0, then T + I is invertible.
(ii) : If T is self-adjoint, then o(T) C R. In particular, when T > 0, we have o(T) C [0, c0).

Proof. For Part (i), we assume that 7" > 0. This implies that
I+ D)l = |l2]|* + | T2l* + 2(Tz, 2) > [|=]*

for all x € H. So the invertibility of I 4+ T follows from Lemma 12.2.

For Part (ii), we first claim that T+ is invertible. Indeed, it follows from (T +4)*(T +1i) = T? + 1
and Part () immediately.

Now if A = a +1ib € o(T) where a,b € R with b # 0, then T — A = —b(=2 (T — a) + 4) is invertible
because (T — a) is selfadjoint.

Finally we are going to show o(7") C [0,00) when 7" > 0. Notice that since o(T') C R, it suffices to
show that T — ¢ is invertible if ¢ < 0. Indeed, if ¢ < 0, then we see that T — ¢ = —c(I + (=27)) is
invertible by the previous assertion because _TlT > 0.

The proof is finished. O]

Remark 12.6. In Proposition 12.5, we have shown that if T is selfadjoint, then o(T) C R. How-
ever, the converse does not hold. For example, consider H = C? and

0 1
T = ( - ) |
Theorem 12.7. Let T € B(H) be a selfadjoint operator. Put
M(T) := sup (Tz,z) and m(T)= inf (Tz,z).
lzl=1 llzll=1

For convenience, we also write M = M(T') and m = m(T) if there is no confusion.
Then we have

(1) : | Tl = max{[ml, [ M]}.

(ii) : {m, M} C o(T).

(i1i) : o(T) C [m, M].
Proof. Notice that m and M are defined because (T'z,x) is real for all x € H by Lemma 12.1 (i).
Also Part(7) can be obtained by using Lemma 12.1 (ii) again.
For Part (i7), we first claim that M € o(T) if T > 0. Notice that 0 < m < M = ||T|| in this

case by Lemma 12.1. Then there is a sequence (z,) in H with |z,| = 1 for all n such that
(Tzy,xn) = M = ||T||. Then we have

(T — M)z, |? = |Tzn|? + M?||2n|? = 2M (T2, ) < ||T|J> + M? — 2M (T, ) — 0.
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So by Lemma 12.2 we have shown that 7' — M is not invertible and hence M € o(T) if T' > 0.
Now for any selfadjoint operator T if we consider 1" — m, then T'—m > 0. Thus we have M —m =
M(T —m) € o(T —m) by the previous case. It is clear that o(T" — ¢) = o(T) — ¢ for all ¢ € C.
Therefore we have M € o(T') for any self-adjoint operator.

We are now claiming that m(T") € (7). Notice that M (—T) = —m(T). So we have —m(T') €
o(=T). Tt is clear that o(—T) = —o(T). Then m(T) € o(T).

Finally, we are going to show o(T') C [m, M].

Indeed, since ' —m > 0, then by Proposition 12.5, we have o(T) —m = (T — m) C [0,00). This
gives o(T) C [m, o0).

On the other hand, similarly, we consider M —T > 0. Then we get M —o(T) = o(M —T) C [0, c0).
This implies that o(T") C (—oo, M]. The proof is finished. O

13. COMPACT OPERATORS ON A HILBERT SPACE

Throughout this section, let H be a complex Hilbert space.

Definition 13.1. A linear operator T : H — H is said to be compact if for every bounded sequence
(xn) in H, (T(xy,)) has a norm convergent subsequence.

Write K(H) for the set of all compact operators on H and K(H)s, for the set of all compact
selfadjoint operators.

Remark 13.2. Let U be the closed unit ball of H. It is clear that T is compact if and only if the

norm closure T'(U) is a compact subset of H. Thus if T' is compact, then T is bounded automatically
because every compact set is bounded.

Also it is clear that if T has finite rank, that is dim imT < oo, then T must be compact because
every closed and bounded subset of a finite dimensional normed space is equivalent to it is compact.

Example 13.3. The identity operator I : H — H is compact if and only if dim H < oco.

Example 13.4. Let H = (*({1,2...}). Define Tx(k) := @ for k=1,2.... Then T is compact.

In fact, if we let (z,) be a bounded sequence in (2, then by the diagonal argument, we can find

a subsequence yp, = Txy of Tx, such that lim y,,(k) = y(k) exists for all k = 1,2... Let
m—r0o0

L = sup,, [|[za|3. Since |ym(k)|* < ITL‘Z for all m,k, we have y € £2. Now let € > 0. Then one can
find a positive integer N such that 3~y AL/K? < e. So we have

AL
D ) —yB)P < Y 5 <e
k>N k>N

for all m. On the other hand, since li_r>n ym(k) = y(k) for all k, we can choose a positive integer
m o
M such that

N-1
S ym(k) — y(R)? <
k=1

for all m > M. Finally, we have ||ym — y||3 < 2¢ for allm > M.

Theorem 13.5. Let T € B(H). Then T is compact if and only if T maps every weakly convergent
sequence in H to a norm convergent sequence.

Proof. We first assume that T € K(H). Let (x,) be a bounded sequence in H. Since H is reflexive,
(xr) is bounded by the Uniform Boundedness Theorem. So we can find a subsequence (z;) of (xy,)
such that (T'z;) is norm convergent. Let y := lim; Tz;. We claim that y = lim, Tx,. Suppose
not. Then by the compactness of T' again, we can find a subsequence (z;) of (z,) such that Tz;
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converges to y' with y # y/. Thus there is z € H such that (y,z) # (v/,z). On the other hand, if
we let x be the weakly limit of (z,,), then (z,,w) — (z,w) for all w € H. So we have

(y,2) = li]m(ij,z) = lijrrl(:nj,T*(z)) = (2, T%2) = (Tx, 2).

Similarly, we also have (y, z’) = (T'z, z) and hence (y, z) = (y, 2’) that contradicts to the choice of
z.

For the converse, let (z,) be a bounded sequence. Then by Theorem 8.4, (x,) has a weakly
convergent subsequence. Thus T'(z,) has a norm convergent subsequence by the assumption at
once. So T is compact. O

Proposition 13.6. Let S,T € K(H). Then we have
(i) : oS+ BT € K(H) for all o, 5 € C;
(ii) : TQ and QT € K(H) for all Q in B(H);
(iii) : T* € K(H).
Moreover K(H) is normed closed in B(H).
Hence K(H) is a closed x-ideal of B(H).

Proof. (i) and (ii) are clear.
For property (iii), let (zy,) be a bounded sequence. Then (7*z,,) is also bounded. So TT*z,, has a
convergent subsequence 11, by the compactness of T'. Notice that we have

HT*xnk - T*ﬂmeQ = (TT*(w”k - xnz)7$nk - xnz)
for all ny,n;. This implies that (T*z,, ) is a Cauchy sequence and thus is convergent since (xy, ) is
bounded.
Finally we are going to show K(H) is closed. Let (7},) be a sequence in K(H) such that T,,, — T

in norm. Let (z,,) be a bounded sequence in H. Then by the diagonal argument (see the proof in
Proposition 5.11), there is a subsequence (z,, ) of (x,) such that liin Tiny, exists for all m. Now

let £ > 0. Since lim,, T,,, = T, there is a positive integer N such that |7 — Tx|| < . On the other
hand, there is a positive integer K such that || Tyzy, — Tyen,, |l < ¢ for all k, k" > K. So we can
now have

10, — Tt || < 1T, — Tng ||+ T n, — T ||+ | Tin, — T, | < (2L + 1)e

for all k,k" > K where L := sup,, ||z,||. Thus limy T'z,, exists. It can now be concluded that
T € K(H). The proof is finished. O

Corollary 13.7. Let T € K(H). If dim H = oo, then 0 € o(T).

Proof. Suppose that 0 ¢ o(T). Then T~! exists in B(H). Proposition 13.1 gives I = TT! €
K(H). This implies dim H < oo. O

Proposition 13.8. Let T € K(H) and let ¢ € C with ¢ #0. Then T — ¢ has a closed range.

1 1
Proof. Notice that since -1 € K(H), so if we consider =7 — I, we may assume that ¢ = 1.
c

c
Let S =T —I. Let x, be a sequence in H such that Sz, — x € H in norm. By considering
the orthogonal decomposition H = ker S & (ker S)L, we write x, = y, ® z, for y, € ker S and
2, € (ker S)*. We first claim that (z,) is bounded. Suppose not. By considering a subsequence
n_ ¢ (ker S)*.
[zl
Since Sz, = Sx, — x, we have Sv, — 0. On the other hand, since T is compact, and (v,) is

bounded, by passing a subsequence of (v,), we may also assume that Tv, — w. Since S =T — I,
Vp = Ty — Sv, — w —0=w € (ker S)*. Also from this we have Sv,, — Sw. On the other hand,

of (z,), we may assume that we may assume that |z, — oo. Put v, :=
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we have Sw = lim,, Sv,, = lim, T, — lim,v, = w —w = 0. So w € ker S N (ker S)*. It follows
that w = 0. However, since v, — w and ||v,|| = 1 for all n. It leads to a contradiction. So (z,) is
bounded.

Finally we are going to show that x € imS. Now since (z,) is bounded, (7'z,) has a convergent
subsequence (T'zy, ). Let limy T'z,, = z. Then we have

Zny, = Szn, — Tz, = Stp, — T2y, = — 2.
It follows that z = limy, Sz, = limy Sz,, = S(x — 2) € imS. The proof is finished. ]

Theorem 13.9. Fredholm Alternative Theorem : Let T € K(H)sq and let 0 # XA € C. Then
T — X is injective if and only if T — X is surjective.

Proof. Since T is selfadjoint, o(T) C R. So if A € C\ R, then 7' — X is invertible. So the result
holds automatically.

Now consider the case A € R\ {0}.

Then T — ) is also selfadjoint. From this and Proposition 10.3, we have ker(T' — \) = (im(T — \))*
and (ker(T — \))* =im(T — N).

So the proof is finished by using Proposition 13.8 immediately. U

Corollary 13.10. Let T' € K(H)sq. Then we have o(T) \ {0} = o,(T) \ {0}. Consequently if
the values m(T) and M(T) which are defined in Theorem 12.7 are non-zero, then both are the
eigenvalues of T and ||T|| = max |A|.

€ap(T)
Proof. Tt follows from the Fredholm Alternative Theorem at once. This together with Theorem
12.7 imply the last assertion. U

Example 13.11. Let T € B({?) be defined as in Ezample 13.4. We have shown that T € K(£?)
and it is clear that T is selfadjoint. Then by Corollary 13.10 and Corollary 13.7, we see that
o(T)={0,1,%,3,....}.

Lemma 13.12. Let T € K(H)sq and let Ey :=={x € H : Tx = Az} for A € o(T) \ {0}, that is the
eigenspace of T' corresponding to A. If we fix p € o(T) \ {0} and put 1, := {\ € o(T) : |A| = |ul|},
then we have

dim @ E) < oo.
\el,

Proof. We first notice that dim E) < oo for all A € 0,,(T") \ {0} because the restriction T'|E} is also
a compact operator on E).

On the other hand, since T is selfajoint, we also have E) LEy for A\, N € 0,(T) with X\ # X. Let
V= @AEIu E\. Suppose that dim V' = oco. Then |I,| = co. So, we can find an infinite sequence in
I,, such that A, # A, for m # n. Now choose v, € E), with |v,] = 1 for each A\,. Then v, v,
for n # m. This implies that ||Tv, — Tvn,||? = [Aa|? + [Am|? = 2|p|? > 0 for m # n. So (Tw,) has
no convergent subsequences which contradicts to T' being compact. ]

Theorem 13.13. Let T € K(H )sq. And suppose that dim H = co. Then o(T) = {A1, A2, ....}U{0},
where (A\,) is a sequence of real numbers with Ay, # \p, for m #n and |\,| ] 0.

Proof. Note that since ||T'|| = max(|M (T)|,|m(T)|) and o(T) \ {0} = 0,(T") \ {0}. So by Corollary
13.10, there is |A1| = )\ma(XT) |A| = ||T]|. Since dim E), < oo, then Efl # 0. Then by considering
Eop

the restriction of T5 := T]E)%l # 0, there is [A\o| = maxc,,(13) [A| = || T2]|. Notice that Ay € oy,(T)
and |A2| < |A1] because ||Tz]| < ||T||. To repeat the same step, we can get a sequence (Ay) such
that (|]A,|) is decreasing.
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Now we claim that lim,, |\,| = 0.

Otherwise, there is 7 > 0 such that |\,| > n for all n. If we let v, € E), with ||v,|| = 1 for all n.
Notice that since dim H = oo and dim E) < oo, for any A € 0,(7T') \ {0}, there are infinite many
An’s. Then w, = ﬁvn is a bounded sequence and ||Tw,, — Twy||? = ||v, — vm||? = 2 for m # n.
This is a contradiction since T is compact. So lim,, |A,| = 0.

Finally we need to check o(7T') = {A1, A2, ...} U {0}.

In fact, let p € 0,(T). Since || | 0, we can find a subsequence n; < ny < .... of positive integers
such that

Al = = | > gl = o = | > [Anga] = oo = [Ang] > [Ang ] = oo

Then we can choose N such that |A,y41| < |1 < [Any|. Notice that by the construction of A,’s
implies p = A; for some ny_1 +1 < j < ny.
The proof is finished. O

Theorem 13.14. Let T € K(H)s, and let (A\,) be given as in Theorem 13.13. For each \ €
op(T) \ {0}, put d(N) := dim E) < oco. Let {ex; : i = 1,...,d(N\)} be an orthonormal base for Ej.
Then we have the following orthogonal decomposition:

o
(13.1) H=%erT ®EPE,.

n=1

Moreover B :={ex;: A € 0p(T)\ {0};i=1,..,d(\)} forms an orthonormal base of T(H).
Also the series Z Antn norm converges to T, where t,(x) := Z (x,ex,i)exni, forx € H.

Proof. Put E = @,” | E),. It is clear that kerT' C EL. On the other hand, if the restriction
Ty := T|E+ # 0, then there exists an non-zero element u € 0,(Tp) C 0,(T) because Ty € K(EL).
It is absurd because p # )\% for all i. So T|E+ = 0 and hence E+ C kerT. So we have the
decomposition (13.1). And from this we see that the family B forms an orthonormal base of
(ker T)*. On the other, we have (ker T)* = imT* = imT. Therefore, B is an orthonormal base for
T(H) as desired.

For the last assertion, it needs to show that the series ) ° | A, ¢, converges to T" in norm. Notice
that if we put Sy, := >, t,, then the decomposition (13.1), n}gnoo Smax =Tz for all x € H. So it

n=1

suffices to show that (S,,)5°_; is a Cauchy sequence in B(H). In fact we have

H)‘m—irltm—H Foeeee + )‘m-i-ptm-i-pH = ‘)‘m+1|

for all m,p € N because E) LFE) for m # n and |\,| is decreasing. This gives that (S,) is a
Cauchy sequence since |\,| | 0. The proof is finished. O

Corollary 13.15. T € K(H) if only if T can be approximated by finite rank operators.
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